Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dmitry V. Albov,* Victor B. Rybakov, Eugene V. Babaev and Leonid A. Aslanov

Department of Chemistry, Moscow State
University, 119992 Moscow, Russian
Federation

Correspondence e-mail:
albov@biocryst.phys.msu.su

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.050$
$w R$ factor $=0.144$
Data-to-parameter ratio $=16.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(4-Chlorophenacyloxy)-4-methyl-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridine

In the known reaction of N-phenacylation of 2-methoxypyridine, the O-phenacyl derivative was occasionally obtained. The title compound, $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClNO}_{2}$, was studied by ${ }^{1} \mathrm{H}$ NMR and X -ray diffraction techniques.

Comment

In the course of our systematic study of the effect of size of cycloalkane fragments on the reactivity of pyridine-based heterocycles (Albov et al., 2004a), we have described earlier the crystal structure of 2-methoxy-4-methyl-6,7,8,9-tetra-hydro- $5 H$-cyclohepta $[b]$ pyridine, (1) (Albov, Rybakov, Babaev, Fedyanin \& Aslanov, 2004). In the reaction of (1) with 4-chlorophenacyl bromide we obtained 1-(4-chlorophenacyl)-4-methyl-6,7,8,9-tetrahydro-5 H -cyclohepta $[b]$ pyridin-2(1H)one (Albov et al., 2004b). Our attempt to improve the yield in that reaction occasionally led us to the title compound, (2) (Fig. 1).

(2)

We can speculatively propose two reasons for this unusual substitution. First, self-condensation of phenacyl bromide releases HBr , which removes methyl as methyl bromide. The consequent treatment of the resultant pyridone with phenacyl bromide yields compound (2). Second, the phenacyl cation may perform electrophilic substitution of the methyl cation.

In general, the structures of the bicyclic ring systems in (1) and (2) are very much alike. In both of them cycloheptene rings are in a chair conformation and bond lengths are closely similar. In (2), the torsion angle $\mathrm{C} 20-\mathrm{C} 15-\mathrm{C} 14-\mathrm{O} 14$ is $174.32(19)^{\circ}$, indicating conjugation in the benzoyl fragment.

Experimental

Compound (1) (1.70 g) and 4-chlorophenacyl bromide (1.95 g) were boiled in acetonitrile (15 ml) for 6 h . When thin-layer chromatography showed only traces of the starting materials in the solution, the solvent was evaporated and the product was washed with acetone
(yield $1.79 \mathrm{~g}, 61 \%$). The product was recrystallized from acetone (m.p. $465-467 \mathrm{~K}$). ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$, p.p.m.): 1.55 (m, $\left.4 \mathrm{H}, 7-\mathrm{CH}_{2}+8-\mathrm{CH}_{2}\right), 1.80\left(\mathrm{~m}, 2 \mathrm{H}, 9-\mathrm{CH}_{2}\right), 2.65-2.75\left(m, 4 \mathrm{H}, 6-\mathrm{CH}_{2}+\right.$ $\left.10-\mathrm{CH}_{2}\right), 2.25\left(s, 3 \mathrm{H}, 12-\mathrm{CH}_{3}\right), 5.45\left(s, 2 \mathrm{H}, 13-\mathrm{CH}_{2}\right), 6.45(s, 1 \mathrm{H}$, 3-CH), 7.49, 7.95 (dd, 4H, Ar).

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClNO}_{2}$
$M_{r}=329.81$
Triclinic, $P \overline{1}$
$a=6.2691(16) \AA$
$b=9.2424(10) \AA$
$c=14.926(3) \AA$
$\alpha=94.390(10)^{\circ}$
$\beta=98.02(2)^{\circ}$
$\gamma=94.56(2)^{\circ}$
$V=850.3(3) \AA^{\circ}$

$$
Z=2
$$

$D_{x}=1.288 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=32-35^{\circ}$
$\mu=2.06 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.25 \times 0.23 \times 0.21 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4
diffractometer
Non-profiled ω scans
Absorption correction: none
3409 measured reflections
3409 independent reflections
2390 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.000$

Refinement

Refinement on F^{2}
$\theta_{\text {max }}=74.9^{\circ}$
$h=-7 \rightarrow 7$
$k=-11 \rightarrow 11$
$l=0 \rightarrow 18$
1 standard reflection every 200 reflections intensity decay: 2%
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.144$
$S=0.95$
3409 reflections
209 parameters

Table 1

Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

C11-C18	1.737 (2)	C8-C9	1.509 (2)
N1-C2	1.301 (2)	C9-C10	1.553 (2)
N1-C11	1.3671 (19)	C10-C11	1.5094 (19)
C2-O2	1.362 (2)	C13-C14	1.512 (3)
C2-C3	1.389 (2)	C14-O14	1.222 (2)
O2-C13	1.425 (2)	C14-C15	1.494 (2)
C3-C4	1.350 (2)	C15-C20	1.376 (3)
C4-C5	1.406 (2)	C15-C16	1.395 (3)
C4-C12	1.520 (2)	C16-C17	1.379 (3)
C5-C11	1.3948 (19)	C17-C18	1.357 (4)
C5-C6	1.539 (2)	C18-C19	1.397 (4)
C6-C7	1.563 (2)	C19-C20	1.385 (3)
C7-C8	1.536 (2)		
C2-N1-C11	116.25 (14)	C5-C6-C7	113.56 (12)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{O} 2$	118.48 (15)	C8-C7-C6	115.37 (14)
N1-C2-C3	124.24 (16)	C9-C8-C7	116.06 (14)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	117.28 (14)	C8-C9-C10	114.70 (14)
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{C} 13$	116.07 (13)	C11-C10-C9	115.80 (13)
C4-C3-C2	119.13 (15)	N1-C11-C5	120.78 (13)
C3-C4-C5	117.02 (15)	N1-C11-C10	115.02 (12)
C3-C4-C12	120.04 (16)	C5-C11-C10	123.12 (13)
C5-C4-C12	121.64 (16)	O2-C13-C14	112.46 (15)
C11-C5-C4	119.09 (14)	O14-C14-C15	121.64 (17)
C11-C5-C6	119.80 (13)	O14-C14-C13	121.29 (16)
C4-C5-C6	121.06 (13)	C15-C14-C13	117.06 (15)

All H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93-0.97 \AA)$ and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\text {eq }}$ of the parent C atom.

Figure 1
ORTEP-3 view (Farrugia, 1997) of (2), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database (project 02-07-90322).

References

Albov, D. V., Rybakov, V. B., Babaev, E. V. \& Aslanov, L. A. (2004a). Crystallogr. Rep. 49. In the press.
Albov, D. V., Rybakov, V. B., Babaev, E. V. \& Aslanov, L. A. (2004b) Acta Cryst. E60, o894-o895.
Albov, D. V., Rybakov, V. B., Babaev, E. V., Fedyanin, I. V. \& Aslanov, L. A. (2004). Acta Cryst. E60, o892-o893.

Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

